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Abstract. Growth of interfaces during vapor deposition is analyzed on a discrete lattice. It leads to finding
distribution of local heights, measurable for any lattice model. Invariance in the change of this distribution
in time is used to determine the cross over effects in various models. The analysis is applied to the discrete
linear growth equation and Kardar-Parisi-Zhang (KPZ) equation. A new model is devised that shows early
convergence to the KPZ dynamics. Various known conservative and non conservative models are tested
on a one dimensional substrate by comparing the growth results with the exact KPZ and linear growth
equation results. The comparison helps in establishing the condition that determines the presence of cross
over effect for the given model. The new model is used in (2+1) dimensions to predict close to the true
value of roughness constant for KPZ equation.

PACS. 68.55.-a Thin film structure and morphology – 81.15.Aa Theory and models of film growth –
82.20.Fd Collision theories; trajectory models

Growth on a lattice from vapor can be represented in pri-
marily two ways. It can be modeled as a lattice model
where the atomic interactions are replaced by simple
growth rules [1,2], then obtain a growth equation based on
various symmetries of the problem under consideration [1].
Other way is to construct the growth terms from the given
growth rules for a lattice model at the coarse-grained time
and length scales [3]. The KPZ equation was introduced
to include lateral growth in growth equation [4]. It has
attracted a lot of attention in the field of growth. There
are many lattice models and numerical solutions claiming
to belong to the same universality as KPZ equation [5–
11]. In (1+1) dimensions, exponents can be exactly ob-
tained [1]. However, in higher dimensions exact values are
not obtained. Various lattice models and numerical solu-
tions predict a range of values due to the cross over and
finite size effects. In the following we develop a method
to determine the existence of cross over effect in a model.
We will apply the method to models belonging to Edward-
Wilkinson (EW) [12] and KPZ universality. This will help
us to identify those models that converge early to their re-
spective universality and hence determine the correspond-
ing growth exponents with better accuracy.

Growth equation representing EW universality is,

∂h

∂t
= ν0∇2h+ η (1)

a e-mail: svg@electronics.unipune.ernet.in

where, ν0 explicitly depends upon F , and η is the noise
due to the randomness in the deposition flux. It has the
correlation given by 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)δ(t −
t′). The angular brackets denote the ensemble average of
the contents. The lowest ordered non-linear correction to
EW equation was introduced by Kardar et al. [4]. The
resulting equation,

∂h

∂t
= ν0∇2h+ λ(∇h)2 + η (2)

is known as KPZ equation. This is a non-conservative
equation defining the KPZ universality. These growth
equations are characterized by roughness exponent α
and z, determining the evolution correlations in time. One
can measure α from the height-height (h–h) correlations,

G(x, t) =
1
N

∑

x′
(h(x+ x′, t) − h(x′, t))2

= x2αf

(
x

ξ(t)

)
(3)

where, correlation length ξ(t) ∼ t1/z . In the limit x → 0,
f → 1. Thus for a large ξ(t), the plot ofG(x, t) vs. x on the
log scale must be a straight line for small x on any scalable
surface. Hence any lattice model should comply with this
requirement for large enough length and time scales. Ab-
sence of straight region over large enough length and time
scales for a lattice model indicates that the correspond-
ing surface is not scalable. We elucidate this point in the
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case of models believed to represent EW and KPZ equa-
tions. Time exponent β, where z = α/β can be obtained
by measuring the width over a substrate of length L as,

w2 =
1
N

∑

x

(h(x, t) − h̄(t))2

= L2αg

(
L

ξ(t)

)
. (4)

It can be shown that [1] for small times w2 ∼ t2β .
We obtain our method by discretization of growth

equations. Consider a one dimensional scalable lattice
with a lattice constant a. We define step at site i as

δxi(t) = hi(t) − hi+1(t). (5)

Here, hi(t) = Hi(t) − H̄(t), where Hi(t) and H̄(t) are
values of height and average height measured from the
substrate so that hi(t) has a zero mean. The local slope
is then −δxi/a. Consider linear growth equation (1) in
(1+1) dimensions. ∂h

∂t → (hi(t + ∆t) − hi(t))/∆t on dis-
cretization. The r.h.s. is (δxi−1(t)− δxi(t))/a+ηi(t). This
relation predicts the value of change in hi at (t + ∆t)
dependent on the discrete differences in steps at t. Let
∆hi = hi(t+∆t)−hi(t). From the nature of the equation
〈∆hi〉 = 0. On the r.h.s. of the discrete linear equation,
〈δxi−1(t) − δxi(t)〉 = 0 and 〈ηi(t)〉 = 0. Thus the differ-
ential term and the noise term can be averaged to zero
independently. In fact this is true for any conservative dif-
ferential term. This observation is related to the fact that
noise does not couple to conservative differential terms
except with q = 0 mode [13]. For KPZ equation r.h.s. is
proportional to (δxi−1(t)−δxi(t)+δx2

i (t)+ηi(t)). Between
the terms (δxi−1(t)− δxi(t)) and (δx2

i (t)), the latter term
is bα times stronger where b is scaling parameter. Hence
for large b, ∆hi will be determined by (δx2

i (t)) although
the Laplacian is needed for the stable growth.

For any given growth equation, in the time interval
of ∆t, a distribution of ∆hi is generated. The distribu-
tion of ∆hi in the case of KPZ equation is determined
by fluctuations in δxi−1(t)− δxi(t) + (δxi(t))2 + ηi(t) and
in the case of EW equation by fluctuations in δxi−1(t) −
δxi(t)+ ηi(t). Since we are assuming a growth in the scal-
ing regime, it is required that for the given time interval
∆t, the distribution of ∆hi must be independent of time.
The time independence indicates that the random force
as represented by the noise term in the growth equation
is adequately compensated for by the stabilizing growth
term. The time dependence for the distribution will in-
dicate that on the growing surface (1) the weightages of
configurations are changing in time, and/or (2) new con-
figurations are generated as growth proceeds affecting the
morphology on given scale. This will imply that the true
scalable growth is not obtained. Normally one identifies
scaling region by inspecting w vs. t on logarithmic scale.
The beginning of linear region on this plot is considered
as the onset of scaling region.

In the following we define a measure of ∆hi useful
for any type of growth equation or a lattice model. Lo-
cal configuration defining growth term is directly related

to ∆hi. This suggests that a measure of ∆hi can be ob-
tained by defining local height with respect to a local
reference. Such height will respond to local changes in
heights and help in providing a measure of ∆hi. We define
such a height as a height measured from average height
of neighbors. (hi(t))local = hi(t)− (hi−1(t) + hi+1(t))/2 =
(δxi(t) − δxi−1(t))/2, from equation (5), proportional to
the difference between the local steps. Incidentally, the ex-
pression is similar to the Laplacian, hence (hi(t))local can
also be referred as Laplacian without losing the generality.
Although Laplacian represents EW growth term, for any
growth term it can be used to define a measure of ∆hi.
The generality of (hi(t))local can be established if it is re-
lated to some general property of the surface and not to
the specific term in a growth equation. Consider the (h–h)
correlations in (1+1) dimensions,

G(n, t) =
〈
(hi(t) − hi+n(t))2

〉
. (6)

We assume that the correlation length ξ is very large com-
pared to the lattice constant a. Using the definition of steps
equation (5),

G(2, t) = 〈δx2
i (t) + δx2

i+1(t) + 2δxi(t)δxi+1(t)〉. (7)

Let 〈δxi(t)2〉=〈δxi+1(t)2〉=δ2 and, 〈δxi(t)δxi−1(t)〉=sδ2
where s is the average coupling between the consecu-
tive steps. The distribution for δxi(t) is always symmetric
around zero for a rough surface that follows x→ −x sym-
metry, and time independent for an ensemble average.

In the limit ξ → ∞ equation (3) reduces to
G(x) = cx2α where constant c = G(1). Hence equation (7)
can be written as

22α = 2 + 2s (8)

where G(1) = δ2 in the discretized case. Coupling s
uniquely determines α. Thus, for s = −1/2, 0, and 1,
α is 0, 0.5, and 1 respectively. This analysis can be easily
extended to higher dimensions. The relation, equation (8),
between α and s remains unchanged over a square, cubic
or hypercube lattice in higher dimension. We have inde-
pendently verified it for the EW model. Note that s seems
to be a local parameter whereas α is defined over all the
ranges of space variable. However, as is mentioned in the
beginning of this derivation, both α and s are defined over
a scalable lattice. This allows us to compare them on the
same footing. However, in the lattice models growth rules
are applied on a physical lattice so that length scale is not
reducible below this physical lattice. Effect of this finite
length scale is expected to affect the initial growth in the
transient region. How long this transient can be? In the fol-
lowing we suggest a method to determine the relative time
scales for convergence of different models. Thus a growth
model is expected to converge earlier to the asymptotic
universality if it follows the growth equation closely even
at this physical scale. We elaborate this fact and use it to
compare the convergence of different lattice models in EW
and KPZ universality. A rough surface will be character-
ized by some value of s. Using the definition of (hi(t))local

in terms of steps it can be shown that

4〈(hi(t))2local〉 = (2 − 2s)δ2. (9)
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Fig. 1. Plot of distribution of ∆h(t)local for the (1+1) dimen-
sional SC model described in the text, on semi log scale. P (∆h)
represents relative probability of occurence of ∆h. The distri-
bution is for t = 5000 MLs, with σ = 1.7. The distribution is
obtained by collecting the data over 3000 runs.

This shows that the distribution of (hi(t))local can be used
as a measure of α and the definition of (hi(t))local is ap-
plicable to any growth equation which has 0 ≤ α ≤ 1.

However, distribution of (hi(t))local cannot be used
to represent that of ∆hi. Latter quantity is a result of
local configuration dependent term and the fluctuation
due to the noise term. Thus the appropriate measure
of the distribution of ∆hi will be, uncorrelated fluctu-
ations in (hi(t))local. Thus we measure the distribution
of uncorrelated fluctuations ∆h(t)local from the difference
∆h(t)local = (hi(t))local − (hi(t+∆t))local. Here we mea-
sure (hi(t + ∆t))local at a later time (t + ∆t), where
∆t > w(t). w(t) =

√
w2 is the width of the interface

at t, and the inequality ensures that the difference be-
tween local heights measured at t and t+∆t are uncorre-
lated [14]. w(t) represents correlation length in time [14].
Figure 1 shows such a distribution for the model SC de-
scribed later in this paper representing KPZ universal-
ity. We obtain such distributions for a given model at
two different times with an interval much larger than
the ∆t. In our case we have obtained distributions at
t = 500 MLs and t = 5000 MLs for comparison, and
∆t = 100 MLs in (1+1) dimensions. Since the counts at
∆h(t)local = 0 are largest in the distribution, the statis-
tical error is minimum for zero fluctuation. We therefore
use the parameter P0 = 100( I500−I5000

I500
), where It is the

count at ∆h(t)local = 0, to measure the time invariance
of the distribution of ∆h(t)local in (1+1) and (2+1) di-
mensions. Ideally P0 should be zero. We have also cal-
culated sum of absolute values of Pi = 100( Ii,500−Ii,5000

Ii,500
)

measured between i = −4 to +4 values of the ∆h(t)local

as an additional measure of the constancy of the distribu-
tion of ∆h(t)local. Here, Ii,500 and Ii,5000 are the counts
at ∆h(t)local = i in the distribution at 500 and 5000 MLs
respectively. This range (–4 to +4) is chosen because one
of the models used in the present work provides values of
∆h(t)local only within this range. This sum is denoted by
Psum.

For any model expected to follow the KPZ, EW or any
other conservative or non conservative growth equation, it

is required that this distribution must be constant in time.
In order to confirm the invariance of the distribution

of ∆h(t)local, we compute this distribution by numerically
integrating the EW equation. Being linear, this equation is
ideally suited for numerical integration [15]. The discrete
form of the equation is,

hn+1
i = hn

i + δt[ν0(hn
i+1 + hn

i−1 − 2hn
i ) +

√
(Dδt)ψn

i (10)

where, hn
i approximates height variable h(i∆x, nδt) and

ψn
i is an independent Gaussian variable with zero mean

and unit variance. We have chosen ν0 = D = 1 and
δt = 0.1. The simulations are performed over L = 8000
for finding P0 and Psum. To obtain α, L = 40000 and
500000 iterations are performed. After 5000 iterations,
the width square w2 = 8.3. To produce same amount of
fluctuations in squared height, 35 iterations are required
on an average. Thus we choose 100 iterations representing
∆t > w(t). We have measured P0 and Psum for the numer-
ically integrated EW equation. The results are displayed
in Table 1. Clearly P0 = 0.0085± 0.01% confirms the cri-
terion of invariance proposed above. The α value is exact
within statistical variance as expected. Thus the results
show that smaller the values of P0 and Psum for a model,
faster is the convergence to the underlying Universality.

In the following we apply this criterion of constancy
to some of the models representing EW and KPZ uni-
versalities. Although above discussion was for growth on
one dimensional substrate, the corresponding criterion can
be easily extended to higher dimensions. We have chosen
∆t = 60 MLs in (2+1) dimensions. The time difference
over which the constancy of distribution is tested is from
500 MLs to 5000 MLs in (1+1) as well as in (2+1) dimen-
sions. In this time interval for all the models considered,
ln(w) vs. ln(t) curve is linear implying scaling region for
the growth. In (2+1) dimensions, two sets of ∆h(t)local

are generated, one corresponding to x and other y direc-
tion, and added. The representative models are briefly de-
scribed below.

(a) KK model [5]: in this model growth proceeds by
selecting a site randomly (this is the first step in all the
models described here.). A particle is accommodated
at the site if the absolute height difference between
the selected site after deposition and for each of the
nearest neighbors is less than or equal to a number N .
(b) SC model: we introduce another SOS model which
provides limited tunability with respect to the spread
in the distribution. This helps in identifying exponent
values close to the true values in (2+1) dimensions.
The deposition rules for the model are as follows. In
(1+1) dimensions the deposited atom is accommo-
dated if both its neighbors have at least same height as
the deposited one. Otherwise, largest of the step differ-
ences at the site, sd, is obtained and accommodation is
allowed according to the probability factor e−s2

d/(2σ2).
Here σ can be varied as a tunable parameter. In (2+1)
dimensions the deposited atom is accommodated if
three or more neighbors have at least same height as
its own. For other depositions the accommodation is
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Table 1. α values as obtained from height-height correlations, P0 the ratios of values, and sum of ratios Psum of δ(hi)local at
500 MLs and 5000 MLs for different models in (1+1) dimensions.

Model/Parameter α P0 in % Psum in %
KPZ and
EW Equation 0.5 0.0 0.0
Numerical solution
to EW equation 0.4993 ± 0.0022 0.0085 ± 0.01 0.42 ± 0.4
KK (N = 1) 0.5089 ± 0.012 −0.5 ± 0.06 6.8 ± 1.0
SC (σ = 1.7) 0.5062 ± 0.0015 0.07 ± 0.02 1.1 ± 0.4
NN1 0.514 ± 0.02 1.82 ± 0.12 14.3 ± 2.0
HM 0.496 ± 0.002 0.06 ± 0.05 1.5 ± 1.2

decided from the largest of the four steps around the
site using above exponential probability factor. Details
of this model are described elsewhere [16]. We have
computed the coefficient of nonlinear term λ = −0.22,
for this model using tilted substrate method [17]. This
model provides exact exponents within statistical er-
ror using structure factor S(q) calculations [16]. It is
seen that over a relatively larger range of q values, S(q)
falls on a straight line of slope −2.0 on the log-log plot
giving α = 0.5.
(c) NN1 model [3]: this is a conservative SOS model. A
particle after deposition is allowed to relax by hopping
to a nearest neighbor site if it can lower its height. The
hop is not allowed if the height of one or more of its
nearest neighbors is equal or larger.
(d) HM model [18]: this conservative model is based
on the models proposed in reference [18]. Here, in
a growth equation that involves terms of the form
∇2f(x), the growth proceeds by allowing the parti-
cle to hop to the nearest site that has minimum value
for f(x). Thus, f(x) is like a potential. For ∇2h,
f(x) = h(x). For, ∇4h, f(x) = −∇2h.
Models (a), (b) are assumed to belong to KPZ univer-
sality and models (d) and (e) to EW universality.
In Table 1 we present the results from the measure-
ment of distribution of ∆h(t)local for different mod-
els in (1+1) dimensions. The error bars are obtained
by performing the simulations with different sets of
random numbers. Thus, to obtain P0 for a model,
2000 runs are performed ones. Such 2000 runs are per-
formed 5 to 10 times to obtain average P0 and the
standard deviation which is reported in the Table 1.
Same procedure is followed for Psum.
KK Model: it shows a deviation of −0.5 ± 0.06% and
6.86±1.0% in P0 and Psum respectively. For KK model
the distribution becomes narrower in time (–ve P0)
indicating that number of tilted regions are growing
with time. We have used N = 1 for KK model as
height limitation [5].
SC Model: with σ = 1.7 it shows significantly small
spread compared to KK model in the distribution. We
have observed that for other values of σ, spread is
larger. The advantage of this model is that it shows
comparatively smaller cross over effects. By varying σ
it is possible to get faster convergence to the KPZ dy-
namics.

We have performed simulations between 200 MLs to
2000 MLs, 2000 MLs to 20 000 MLs. Corresponding results
have same trends i.e. for SC model the P0 and Psum are
less than 0.1% and 1.5% respectively while for KK model
the absolute value is larger than 0.5% and 6%. These re-
sults when compared to the results of the numerical solu-
tion of EW equation indicate that SC model will converge
earlier than KK model to the KPZ universality. The accu-
racy of the exponent values obtained from these models is
discussed later. It has been shown in reference [19] that the
two well known models, NNBD and NNNBD [1], both be-
longing to KPZ the universality have very different height
distribution. Since our method is dependent on the local
measure for height it is expected to show this difference.
We have measured P0 and Psum for these models. The
values are (0.09 ± 0.08%, 1.4 ± 1.1%) and (1.3 ± 0.07%,
3.4 ± 1.1%) for NNBD and NNNBD models respectively.
As expected, P0 and Psum for the two models differ suffi-
ciently to reflect the difference in the local height distribu-
tions. These results indicate that the NNNBD model will
converge later than the NNBD model.

The results for conservative growth models also con-
firm to this behavior.

HM Model and NN1 Model: HM model is like solv-
ing linear second ordered growth equation locally. It is
expected to follow the dynamics exactly. The P0 and
Psum values are indeed close to zero for this model. The
NN1 model restricts the minimization of h(x) due to the
constraint that it is immobile if one or more nearest neigh-
bors are present. This model has larger values of P0 and
Psum indicating late convergence to the EW universality
compared to HM model.

Regarding α values, it will be seen that for SC model
and HM model, the values do not overlap the exact value
of 0.5 within statistical error bars, but KK and NN1 mod-
els do. This apparent contradiction is a result of curved
nature of the plots on the log-log scale for G(x, t) vs. x
for these models. In order to bring out the curved na-
ture of these plots for different models, we fit straight line
y = mx+c0 on the log-log plot for each model at an inter-
val of ∆x = 10. For a plot with no curvature, the values of
c0 should be independent of x. Figure 2 shows the log-log
plots of G(x, t) vs. x for different models. Figure 3 shows
the plot of c0 vs. average x for different models. As is evi-
dent from the results, KK and NN1 models show distinct
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Fig. 2. Plot of G(x, t) vs. x for KK model (N = 1) (open
circles), for HM model (open squares), for NN1 model (filled
circles), and for SC model (filled squares) in (1+1) dimensions.
The curves are shifted along y-axis to avoid overlapping data.
The growth is over 5 × 105 MLs with L = 80 000.

Fig. 3. Plot of c0 the straight line intercept on y-axis, as a
function of average x. The plots are for the models in (1+1)
dimensions, KK (N = 1) (open squares), SC (+), NN1 (×)
and, HM (filled squares). For the sake of comparison, values at
x̄ = 15 are adjusted to the same value for all the models.

curvature for small values of x. This implies that scalable
region is not generated for the time scales and lengths used
for simulation of these models. In fact the statistical vari-
ation associated with the α values of KK and NN1 models
is due to the curvature. It cannot be further reduced by in-
creasing the number of simulations for averaging purpose.
The P0 and Psum for SC and HM models are larger than
those obtained for numerically integrated EW equation.
Hence the convergence for these models is expected to be
for longer times and lengths than those used in the simula-
tions. The deviation in measured α values from the exact
value for these models are consistent with these facts. The
closeness of α values is true in nature. On the contrary,
the apparent overlap through statistical variance with the
exact α value for KK and NN1 models is misleading due
to the curved nature of corresponding G(x, t) vs. x plots
on the log-log scale.
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Fig. 4. Plot of G(x, t) vs. x for KK model (N = 1) (open
squares), and for SC model (filled squares) in (2+1) dimen-
sions.

Above results assert that a model will converge ear-
lier to its representative growth equation dynamics if the
spread in its distribution of ∆h(t)local is minimum. The
advantage of this measurement is that it can be performed
over a relatively small amount of growth compared to the
G(x, t) measurement. Thus, even in higher dimensions the
method can be used to determine the cross over effects in
a model at an early stage.

We have applied this method to determine an accurate
value of α for the KPZ equation in (2+1) dimensions. For
KK (N = 1) model the P0 is 0.29 ± 0.02% and Psum =
5.0 ± 1.0% with α = 0.402 ± 0.016. For SC model with
σ = 2.5, P0 is 0.02 ± 0.05% and Psum = 1.3 ± 1.1% with
α = 0.355 ± 0.001. For KK model α is measured between
x = 5 and 20 while for SC model it is between x = 2
and 50. We have plotted these results in Figure 4. From
the comparison of the values of P0 and Psum for these
two models, we conclude that the SC model is expected to
converge earlier than the KK model. The α value obtained
from SC model is expected to be closer to the true value.
These results show that in (2+1) dimensions, true value
of α for KPZ equation is close to 0.36.

In conclusion, we have established a new criterion that
can be applied to check the cross over effects at an early
stage of growth. When applied to the models represent-
ing KPZ equation, it is seen that a new model, SC model
in this connection can be adjusted to follow the KPZ dy-
namics accurately. This is true in both (1+1) and (2+1)
dimensions. Based on this study it is seen that KK model
predicts exponents that are away from the true values.
Only those models that satisfy the condition of invariance
of the distribution of ∆h(x) will follow the dynamics of
the representative growth equation correctly. These are
the models that converge earlier to the respective uni-
versality in terms of the underlying dynamics. We find
that SC model is expected to converge to the universality
much earlier compared to the KK model over the time and
length scales used here. Similarly HM model is expected
to converge earlier to EW universality compared to NN1.
Hence, the exponent measurements based on earlier con-
verging models are reliable.
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